TRIGONOMETRY

1 Find to 2 decimal places the value of
a $\sec 23^{\circ}$
b $\operatorname{cosec} 185^{\circ}$
c $\cot 251.9^{\circ}$
d $\sec \left(-302^{\circ}\right)$

2 Find the exact value of
a $\operatorname{cosec} 30^{\circ}$
b $\cot 45^{\circ}$
c $\sec 150^{\circ}$
d $\operatorname{cosec} 300^{\circ}$
e $\cot 90^{\circ}$
f $\sec 225^{\circ}$
g $\operatorname{cosec} 270^{\circ}$
h $\cot 330^{\circ}$
i $\sec 660^{\circ}$
j $\operatorname{cosec}\left(-45^{\circ}\right)$
k $\cot \left(-240^{\circ}\right)$
l $\sec \left(-315^{\circ}\right)$

3 Find to 2 decimal places the value of
a $\cot 0.56^{\circ}$
b $\operatorname{cosec} 1.74^{\text {c }}$
c $\sec \left(-2.07^{\circ}\right)$
d $\cot 9.8^{\text {c }}$

4 Find in exact form, with a rational denominator, the value of
a $\sec 0$
b $\operatorname{cosec} \frac{\pi}{4}$
c $\cot \frac{3 \pi}{4}$
d $\sec \frac{4 \pi}{3}$
e $\operatorname{cosec} \frac{2 \pi}{3}$
f $\cot \frac{7 \pi}{2}$
g $\sec \frac{5 \pi}{4}$
h $\operatorname{cosec}\left(-\frac{5 \pi}{6}\right)$
i $\cot \frac{11 \pi}{6}$
j $\sec (-4 \pi)$
k $\operatorname{cosec} \frac{13 \pi}{4}$
l $\cot \left(-\frac{7 \pi}{3}\right)$

5 Given that $\sin x=\frac{4}{5}$ and that $0<x<90^{\circ}$, find without using a calculator the value of
a $\cos x$
b $\tan x$
c $\operatorname{cosec} x$
d $\sec x$

6 Given that $\cos x=-\frac{5}{13}$ and that $90^{\circ}<x<180^{\circ}$, find without using a calculator the value of
a $\sin x$
b $\sec x$
c $\operatorname{cosec} x$
d $\cot x$

7

The graph shows the curve $y=\sec x^{\circ}$ in the interval $0 \leq x \leq 720$.
a Write down the coordinates of the turning points of the curve.
b Write down the equations of the asymptotes.
8 Sketch each pair of curves on the same set of axes in the interval $-180^{\circ} \leq x \leq 180^{\circ}$.
a $y=\sin x$
and $y=\operatorname{cosec} x$
b $y=\tan x$
and
$y=\cot x$

9 Sketch each of the following curves for x in the interval $0 \leq x \leq 2 \pi$. Show the coordinates of any turning points and the equations of any asymptotes.
a $y=3 \sec x$
b $y=1+\operatorname{cosec} x$
c $y=\cot 2 x$
d $y=\operatorname{cosec}\left(x-\frac{\pi}{4}\right)$
e $y=\sec \frac{1}{3} x$
f $y=3+2 \operatorname{cosec} x$
g $y=1-\sec 2 x$
h $y=2 \cot \left(x+\frac{\pi}{2}\right)$
i $y=1+\sec \left(x-\frac{\pi}{6}\right)$

10 Solve each equation for x in the interval $0 \leq x \leq 2 \pi$, giving your answers in terms of π.
a $\cot x=1$
b $\sec x=2$
c $\operatorname{cosec} x=\sqrt{2}$
d $\cot x=0$
e $\sec x=-1$
f $\operatorname{cosec} x=-2$
g $\cot x=-\sqrt{3}$
h $\sec x=-\sqrt{2}$

11 Solve each equation for θ in the interval $0 \leq \theta \leq 360^{\circ}$, giving your answers to 1 decimal place.
a $\sec \theta=1.8$
b $\operatorname{cosec} \theta=2.57$
c $\cot \theta=1.06$
d $\sec \theta=-2.63$
e $\operatorname{cosec} \theta=3$
f $\cot \theta=-0.94$
g $\sec \theta=1.888$
h $\operatorname{cosec} \theta=-1.2$

12 Solve each equation for x in the interval $-180 \leq x \leq 180$
Give your answers to 1 decimal place where appropriate
a $\operatorname{cosec}(x+30)^{\circ}=2$
b $\cot (x-57)^{\circ}=1.6$
c $\sec 2 x^{\circ}=2.35$
d $5-2 \cot x^{\circ}=0$
e $\sqrt{3} \sec (x-60)^{\circ}=2$
f $2 \operatorname{cosec} \frac{1}{2} x^{\circ}-7=0$
g $\sec (2 x-18)^{\circ}=-1.3$
h $\operatorname{cosec} 3 x^{\circ}=-3.4$
i $\cot (2 x+135)^{\circ}=1$

13 Solve each equation for θ in the interval $0 \leq \theta \leq 360$.
Give your answers to 1 decimal place where appropriate.
a $\operatorname{cosec}^{2} \theta^{\circ}-4=0$
b $\sec ^{2} \theta^{\circ}-2 \sec \theta^{\circ}-3=0$
c $\cot \theta^{\circ} \operatorname{cosec} \theta^{\circ}=6 \cot \theta^{\circ}$
d $\operatorname{cosec} \theta^{\circ}=4 \sec \theta^{\circ}$
e $2 \cos \theta^{\circ}=\cot \theta^{\circ}$
f $5 \sin \theta^{\circ}-2 \operatorname{cosec} \theta^{\circ}=3$

14 Solve each equation for x in the interval $-\pi \leq x \leq \pi$.
Give your answers to 2 decimal places.
a $2 \operatorname{cosec}^{2} x+5 \operatorname{cosec} x-12=0$
b $\sec x=3 \tan x$
c $3 \sec x=2 \cot x$
d $4+\tan x=5 \cot x$
e $\operatorname{cosec} x+5 \cot x=0$
f $6 \tan x-5 \operatorname{cosec} x=0$

15 Prove each identity.
a $\sec x-\cos x \equiv \sin x \tan x$
b $(1+\cos x)(\operatorname{cosec} x-\cot x) \equiv \sin x$
c $\frac{\cot x-\cos x}{1-\sin x} \equiv \cot x$
d $(\sin x+\tan x)(\cos x+\cot x) \equiv(1+\sin x)(1+\cos x)$

16

The diagram shows the curve $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x) \equiv 2 \cos x-3 \sec x-5, x \in \mathbb{R}, 0 \leq x \leq 2 \pi
$$

a Find the coordinates of the point where the curve meets the y-axis.
b Find the coordinates of the points where the curve crosses the x-axis.

